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LPEPs

• Is there a way to address potential misspecification?
• Great question! We have not thought much about this.
• Using power likelihoods (in addition to power priors) seems like a good 

option indeed.
• Results cited seem to focus on parameter estimation. Would they extend to

model selection?  Maybe a collaboration?

• Poor performance as the number of non-zero coefficients in the true 
model increases?
• Strong impact of prior on model spaces often goes unacknowledged.
• Some of what you are seeing is because Beta-Binomial(1,1) prior on model 

space heavily favors sparsity!



LPEPs
• What is needed to generalize to the case when p grows with n? Is 

there any hope for p = n or p > n?
• We have worked on consistency results when p grows with n
• Theory is based on asymptotic behavior of BIC, it does include some strong 

constraints on the rate of growth and the models under consideration
• For p=n or p>n we likely need to drop the standard practice of n*=n and X*=X
• Another answer (channeling Perichi):  use the intrinsic prior
• In binary regression, we need to be careful about avoiding separation

• Catalytic prior distributions (Huang, Stein, Rubin, and Kou (2020))?
• Thank you for the reference, we will include it in the revised paper!
• Very close to PEPs, different way to choose X*
• Paper seems to be focused on estimation rather than model selection.
• We have tried using non-null models for m*, with terrible results



Spherical models

• Any guidance to choosing the geometry/manifold family? Are nested 
manifolds preferable?
• Difficult question!
• In our case, the choice of geometry was driven by the application (horseshoe 

theory)
• In the context of network data, some guidance has been developed to select 

between constant-curvature manifolds (session at ISBA 2022)
• Extensive CS/ML/Math literature on “geometric embeddings”.  Focused 

• Can we benefit from the existing literature on priors on manifolds



Spherical models

• Can we benefit from the existing literature on priors on manifolds?
• The short answer is yes!
• One difference between our work and most of the paper referenced is that it 

is not the observed data that lives in the (interesting) manifold.  Instead, the 
manifold corresponds to a latent space

• Priors need to be flexible enough to capture the properties that we need!


